

EMC TEST REPORT

Product : Car camera

Trade mark : N/A

Model/Type reference : LC-010G, LC-009C3, LC-001, LC-001C,

LC-001EU, LC-002, LC-4LED, LC-10A, LC-10C, LC-10E, LC-10F, LC-024A

Serial Number : N/A

Ratings : DC 12V

Report Number : EED32H000320 **Date** : Apr. 17, 2015

Regulations: See below

Test Standards	Results
⊠ EN 50498: 2010	PASS

Prepared for:

LINTECH ENTERPRISES LIMITED
No.9 2nd Street, xinshi, Changping Town, Dongguan
City, Guangdong, China

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by: Lily G Reviewed by: Muleuchan

Approved by: ______ Date: _____ Apr. 17, 2015

Louisa Lu

Complaint call: 0755

Lab supervisor Check No.: 1727834852

TABLE OF CONTENTS

1. GENERAL INFORMATION	2
2. TEST SUMMARY	
3. TEST UNCERTAINTY	3
4. PRODUCT INFORMATION AND TEST SETUP	4
4.1 PRODUCT INFORMATION	
4.2 TEST SETUP CONFIGURATION	4
4.3 SUPPORT EQUIPMENT	
5. FACILITIES AND ACCREDITATIONS	
5.1 TEST FACILITY	4
5.2 TEST EQUIPMENT LIST	4
5.3 LABORATORY ACCREDITATIONS AND LISTINGS	5
6. BROADBAND RADIATED DISTURBANCES AND	6
NARROWBAND RADIATED DISTURBANCES	6
6.1 TEST CONDITION	6
6.2 LIMITS	
6.3 BLOCK DIAGRAM OF TEST SETUP	7
6.4 TEST RESULT	9
7. CONDUCTED TRANSIENT DISTURBANCES	13
7.1 TEST CONDITION	13
7.2 LIMITS	
7.3 BLOCK DIAGRAM OF TEST SETUP	13
7.4 TEST RESULT	
8. CONDUCTED TRANSIENT IMMUNITY	15
8.1 TEST CONDITION	15
8.2 TEST LEVELS AND FUNCTIONAL STATUS	
8.3 BLOCK DIAGRAM OF TEST SETUP	
8.4 CLASSIFICATION OF FUNCTIONAL STATUS	
8.5 TEST PULSE AND PARAMETERS	
8.5.1 TEST PULSE 1	
8.5.2 TEST PULSE 2A	
8.5.3 TEST PULSE 2B	
8.5.4 TEST PULSE 3A	
8.5.5 TEST PULSE 3B	
8.5.6 TEST PULSE 4	
8.6 TEST RESULTS	
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	
APPENDIX 2 PHOTOGRAPHS OF PRODUCT	26


(Note: N/A means not applicable)

1. GENERAL INFORMATION

Applicant: LINTECH ENTERPRISES LIMITED

No.9 2nd Street, xinshi, Changping Town, Dongguan City,

Guangdong, China

Manufacturer: LINTECH ENTERPRISES LIMITED

No.9 2nd Street, xinshi, Changping Town, Dongguan City,

Guangdong, China

EMC Directive: 2004/108/EC

Product: Car camera

Trade mark: N/A

Model/Type reference: LC-010G, LC-009C3, LC-001, LC-001C, LC-001EU, LC-002,

LC-4LED, LC-10A, LC-10C, LC-10E, LC-10F, LC-024A

Serial Number: N/A

Report Number: EED32H000320

Sample Received Date: Jan. 26, 2015

Sample tested Date: Jan. 26, 2015 to Feb. 05, 2015

All test data come from the report of No. EED32H000127.

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item (Test method is refer to 2004/104/EC directive)	Test Result
Broadband Radiated Disturbances and Narrowband Radiated Disturbance	Pass
Conducted Transient Disturbances	Pass
Conducted Transient Immunity	Pass

3. TEST UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Radiated disturbance (30MHz to 1GHz)	4.9

4. PRODUCT INFORMATION AND TEST SETUP

4.1 PRODUCT INFORMATION

Report No.: EED32H000320 Page 4 of 29

Ratings: DC 12V

Model difference: All models are identical except the model number,

appearance and size. The test model is LC-010G and

the test results are applicable to the others.

4.2 TEST SETUP CONFIGURATION

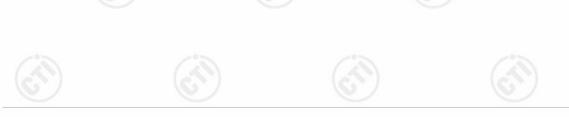
See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

4.3 SUPPORT EQUIPMENT

No.	lo. Device Type Brand		Model	Series No.	Data Cable Power Cord		
1.	Car LCD monitor	LINTECH	LM-070C2		Shielding 1m	Detachable	

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.


5. FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All test facilities used to collect the test data are located at Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4, CISPR 16-1-1 and other equivalent standards.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing. The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

E-mail:info@cti-cert.com

Report No.: EED32H000320 Page 5 of 29

Equipment used during the tests:

3M Semi-anechoic Chamber (2)-Broadband Radiated Disturbances and Narrowband											
Radiated Disturbance											
Equipment Manufacturer Model Serial No. Due Date											
3M Chamber & Accessory Equipment	TDK	SAC-3	(E)	06/01/2016							
Receiver	R&S	ESCI	100435	07/08/2015							
LISN	schwarzbeck	NNBM8125	81251547	07/08/2015							
LISN	schwarzbeck	NNBM8125	81251546	07/08/2015							
Logper. Antenna	SCHWARZBECK	VUSLP 9111B	9111B-088	03/19/2015							
Biconical Antenna	SCHWARZBECK	VHBB 9124 + BBA 9106	9124-587	03/19/2015							

Conducted Transient Disturbances Test								
Equipment Manufacturer Model Serial No. Due Date								
ISO7637 Test System	TESEQ	NSG5500/5600	104	03/18/2015				

Conducted Transient Immunity Test							
Equipment Manufacturer Model Serial No. Due Date							
ISO7637 Test System	TESEQ	NSG5500/5600	W124	03/18/2015			

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Report No.: EED32H000320 Page 6 of 29

6. BROADBAND RADIATED DISTURBANCES AND NARROWBAND RADIATED DISTURBANCES

6.1 TEST CONDITION

Operation mode : Normal
Test voltage : DC 12V
Test Condition : Temp: 2

Temp: 25[°]C Related Humidity: 51%

Air pressure: 101.0Kpa

Model/Type reference : LC-010G

6.2 LIMITS

Frequency (MHz)	Broadband limits at 1m dB(μV/m)			
30-75	62-52 ª			
75-400	52-63 ^b			
400-1000	63			

^a Decreasing linearly with the log of the frequency.

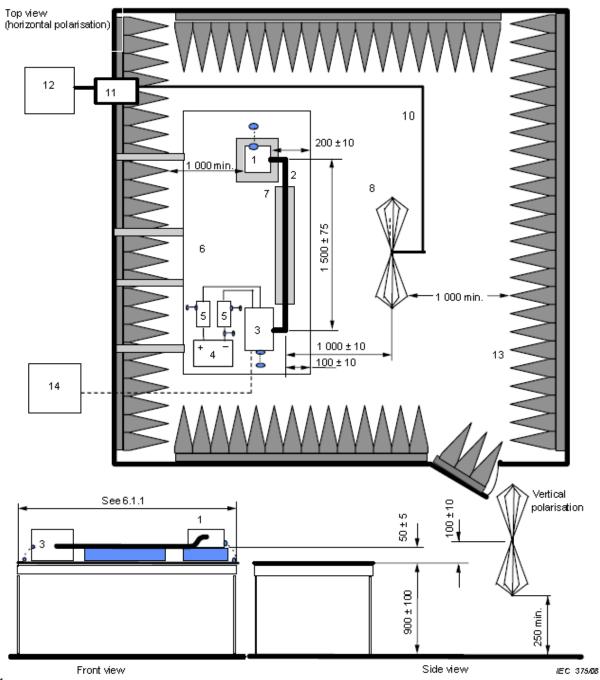
^b Increasing linearly with the log of the frequency.

Frequen	cy (MHz)	Narrowband Limits at 1m dB(µV/m)	
30-	-75	52-42 a	
75-	400	42-53 b	
400-	1000	53	

^a Decreasing linearly with the log of the frequency.

NOTE: The lower limit shall apply at the transition frequencies.

^b Increasing linearly with the log of the frequency.

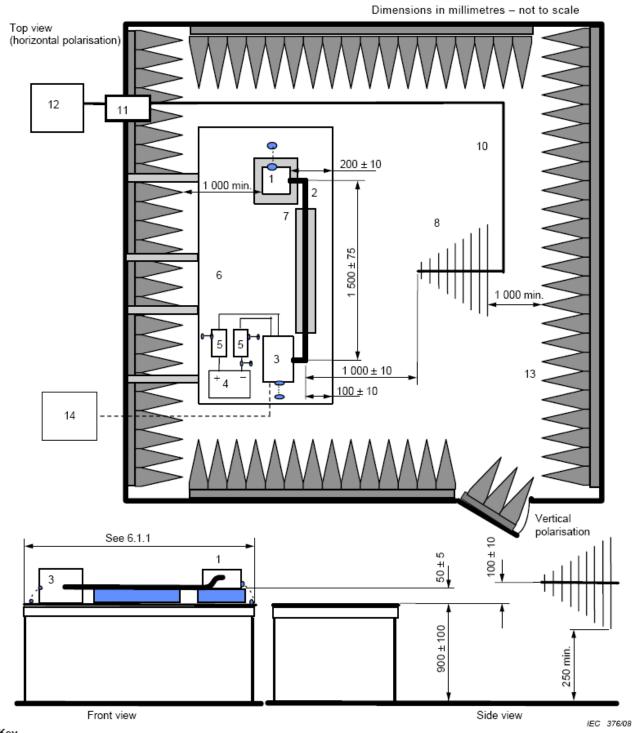


Report No.: EED32H000320 Page 7 of 29

6.3 BLOCK DIAGRAM OF TEST SETUP

- Key
- EUT (grounded locally if required in test plan)
- Test harness
- Load simulator (placement and ground connection 10 High-quality coaxial cable e.g. double-shielded (50 Ω) according to 6.4.2.5)
- 4 Power supply (location optional)
- Artificial network (AN)
- Ground plane (bonded to shielded enclosure)
- Low relative permittivity support (ε_r ≤ 1,4)

- 8 Biconical antenna
- 11 Bulkhead connector
- 12 Measuring instrument
- 13 RF absorber material
- 14 Stimulation and monitoring system

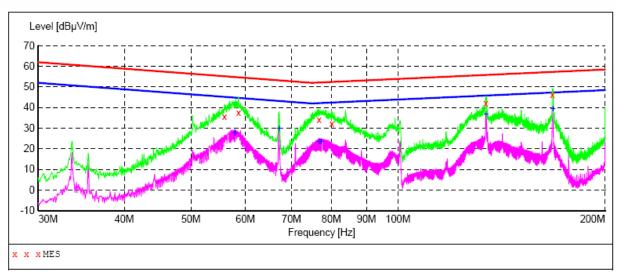


Page 8 of 29

Key

- EUT (grounded locally if required in test plan)
- Test harness
- 3 Load simulator (placement and ground connection 10 High-quality coaxial cable e.g. double-shielded (50 Ω) according to 6.4.2.5)
- Power supply (location optional)
- Artificial network (AN)
- Ground plane (bonded to shielded enclosure)
- Low relative permittivity support ($\epsilon_r \le 1,4$)

- Log-periodic antenna
- 11 Bulkhead connector
- 12 Measuring instrument
- 13 RF absorber material
- 14 Stimulation and monitoring system



6.4 TEST RESULT

Model/Type reference **Product** : Car camera : LC-010G : DC 12V Mode **Power** Normal

Frequency : 30MHz-200MHz

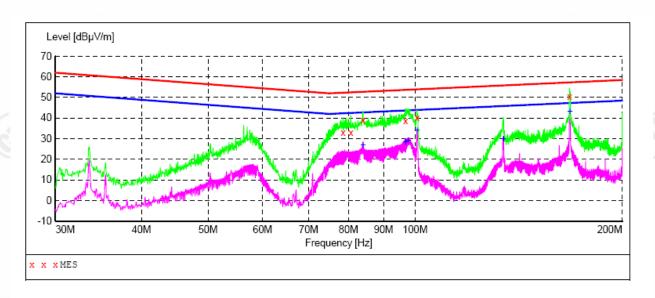
MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
55.920000 58.620000 76.800000 80.100000 134.160000 167.700000	35.70 37.60 34.20 32.20 42.20 46.20	-21.8 -21.9 -22.3 -22.3 -19.4 -17.5	55.2 54.7 52.2 52.4 55.8 57.3	20.2	QP QP	100.0 100.0 100.0 100.0 100.0		HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
57.900000 67.200000 76.800000 77.280000	27.70 30.10 23.50 23.50	-21.9 -22.1 -22.3 -22.3	44.8 43.2 42.2 42.2	17.1 13.1 18.7 18.7	AV AV	100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
134.220000 168.000000	36.90 39.60	-19.4 -17.4	45.8 47.3	8.9 7.7	AV AV	100.0 100.0	0.00	HORIZONTAL HORIZONTAL

Page 9 of 29



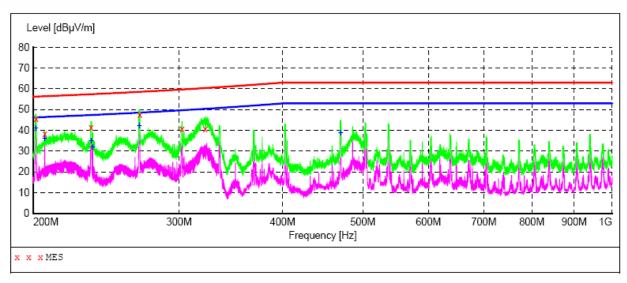
Page 10 of 29

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
78.540000	33.10	-22.3	52.3	19.2	_	100.0	0.00	VERTICAL
80.640000	33.10	-22.2	52.5	19.4	_	100.0	0.00	VERTICAL
84.000000	39.10	-22.2	52.7	13.6	QP	100.0	0.00	VERTICAL
96.840000	38.70	-21.7	53.7	15.0	QP	100.0	0.00	VERTICAL
100.680000	40.00	-21.6	53.9	13.9	QP	100.0	0.00	VERTICAL
167.700000	50.50	-17.5	57.3	6.8	QP	100.0	0.00	VERTICAL

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
84.000000 96.840000 97.740000 100.680000 134.400000 167.880000	27.00 28.40 29.10 34.10 30.10 43.40	-22.2 -21.7 -21.7 -21.6 -19.4 -17.4	42.7 43.7 43.7 43.9 45.8 47.3	15.7 15.3 14.6 9.8 15.7 3.9	AV AV AV	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL



Report No.: EED32H000320 Page 11 of 29

Model/Type reference **Product** : Car camera : LC-010G : DC 12V Power Mode Normal

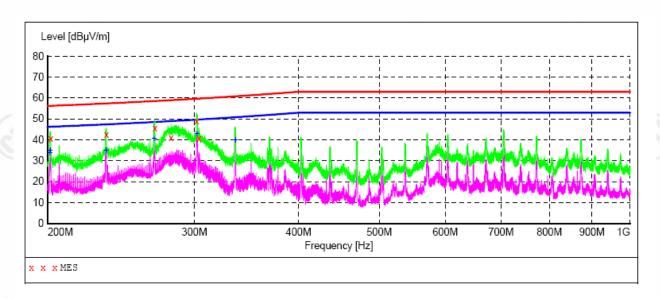
Frequency : 200MHz-1000MHz

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
201.620000 206.480000 234.800000 268.880000 302.480000 322.580000	45.50 38.40 41.40 47.50 40.60 40.90	-16.3 -16.3 -15.9 -15.0 -13.6 -13.2	56.3 56.5 57.4 58.6 59.7 60.4	16.0 11.1 19.1	QP QP QP QP	100.0 100.0 100.0 100.0 100.0	0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
201.440000 206.480000 235.040000 236.000000 268.640000 470.300000	41.00 36.00 35.20 31.90 42.10 39.00	-16.3 -16.3 -15.9 -15.9 -15.0 -10.9	46.3 46.5 47.4 47.4 48.6 53.0	5.3 10.5 12.2 15.5 6.5 14.0	AV AV AV	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL



Report No.: EED32H000320 Page 12 of 29

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
201.680000 235.280000 268.880000 281.240000 301.820000 303.800000	40.60 42.40 45.50 41.20 49.20 40.80	-16.3 -15.9 -15.0 -14.5 -13.6	56.3 57.4 58.6 59.0 59.7	15.7 15.0 13.1 17.8 10.5 18.9	QP QP QP QP QP QP	100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
201.260000 201.440000 235.100000 268.520000 302.240000 335.900000	33.80 35.00 34.80 40.60 42.80 39.80	-16.3 -16.3 -15.9 -15.0 -13.6 -13.0	46.3 46.3 47.4 48.5 49.7 50.8	12.5 11.3 12.6 7.9 6.9 11.0		100.0 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL



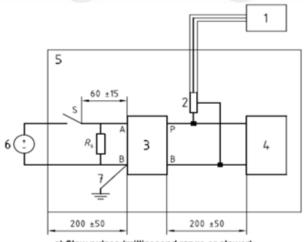
www.cti-cert.com

7. CONDUCTED TRANSIENT DISTURBANCES

7.1 TEST CONDITION

Operation mode : Normal **Test voltage** : DC 12V

Test Condition : Temp: 24.3°C


Related Humidity: 49% Air pressure: 101.0Kpa

Model/Type reference : LC-010G

7.2 LIMITS

Polarity of pulse	Maximum allowe	Maximum allowed pulse amplitude for				
amplitude	Vehicles with 12V systems	Vehicles with 24V systems				
Positive	+75	+150				
Negative	-100	-450				

7.3 BLOCK DIAGRAM OF TEST SETUP

a) Slow pulses (millisecond range or slower)

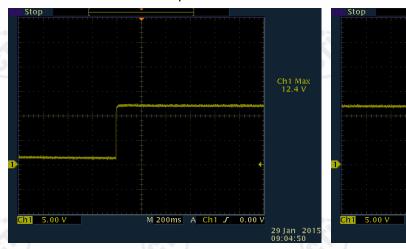
5 100 ±2:5 B 3 B 200 ±50

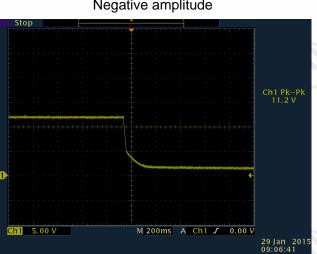
b) Fast pulses (nanosecond-to-micros-econd range)

Kev

- 1 oscilloscope or equivalent
- 2 voltage probe
- 3 artificial network
- 4 DUT (source of transient)

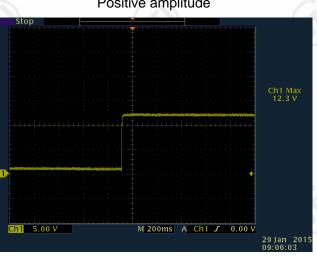
- 5 ground plane
- 6 power supply
- 7 Ground connection; length < 100 mm</p>

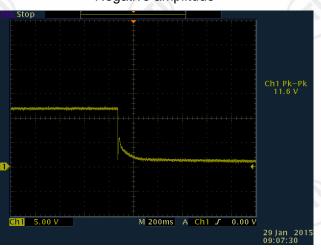




7.4 TEST RESULT Input DC 12V (Fast pulse)

Positive amplitude




Polarity of pulse amplitude	Maximum allowed pulse amplitude	Maximum level	result
Positive	+75V	+12.4V	Pass
Negative	-100V	-11.2V	Pass

Input DC 12V (Slow pulse)

Positive amplitude

Negative amplitude

Polarity of pulse amplitude	Maximum allowed pulse amplitude	Maximum level	result
Positive	+75V	+12.3V	Pass
Negative	-100V	-11.6V	Pass

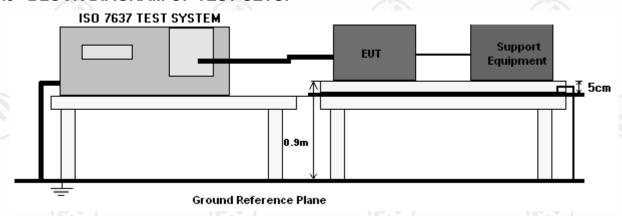
8. CONDUCTED TRANSIENT IMMUNITY

8.1 TEST CONDITION

Operation mode : Normal **Test voltage** : DC 12V

Test Condition : Temp: 24.3℃

Related Humidity: 49% Air pressure: 101.0Kpa


Model/Type reference : LC-010G

8.2 TEST LEVELS AND FUNCTIONAL STATUS

Test pulse number	Immunity test level	Functional status
1	III	D
2a	III	D
2b	III	D
3a/3b	III	D
4	III	D

Functional status D is where one or more functions of the ESA do not perform as designed during and after exposure and do not return to normal operation until exposure is removed and the ESA is reset by simple "operator/use" action.

8.3 BLOCK DIAGRAM OF TEST SETUP

E-mail:info@cti-cert.com

Report No.: EED32H000320 Page 16 of 29

8.4 CLASSIFICATION OF FUNCTIONAL STATUS

Class A: all functions of a device/system perform as designed during and after exposure to disturbance.

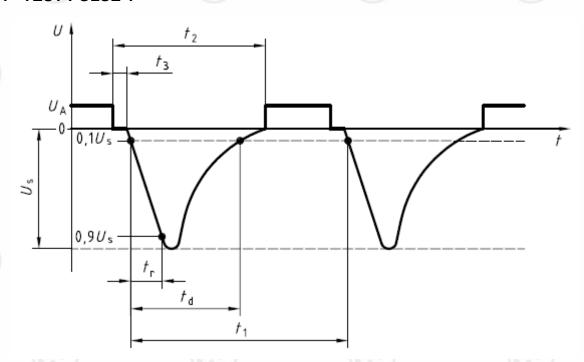
Class B: all functions of a device/system perform as designed during exposure. However, one or more of them can go beyond specified tolerance. All functions return automatically to within normal limits after exposure is removed. Memory functions shall remain class A.

Class C: one or more functions of a device/system do not perform as designed during exposure but return automatically to normal operation after operation after exposure is removed.

Class D: one or more functions of a device/system do not perform as designed during exposure and do not return to normal operation until exposure is removed and the device/system is reset by simple operator/use action.

Class E: one or more functions of a device/system do not perform as designed during and after exposure and can not be returned proper operation without repairing or replacing the device/system.

NOTE The word "function" in this context refers only to the function performed by the electronic system.



Report No. : EED32H000320 Page 17 of 29

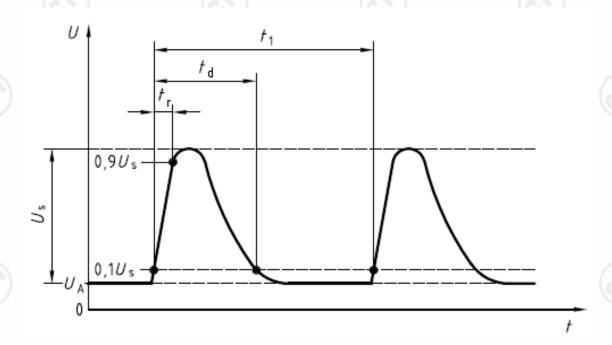
8.5 TEST PULSE AND PARAMETERS

8.5.1 TEST PULSE 1

Parameter	12 V system	24 V system			
U_{s}	–75 V to – 100 V	– 450 V to – 600 V			
R _i	10 Ω	50 Ω			
t _d	2 ms	1 ms			
t _r	1 ₋₀₅ μs	3 _{-1,5} μs			
_{t1} a	0,5 s	to 5 s			
t ₂	200 ms				
t ₃ b	< 10	0 μs			

 t_1 shall be chosen such that the DUT is correctly initialized before the application of the next pulse.

 t_3 is the smallest possible time necessary between the disconnection of the supply source and the application of the pulse.

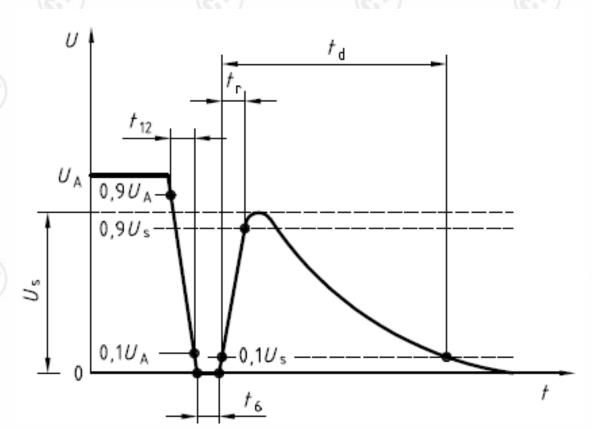


Report No.: EED32H000320 Page 18 of 29

8.5.2 TEST PULSE 2A

Parameter	12 V system	24 V system		
U_{s}	+ 37 V to + 50 V			
$R_{\rm i}$	2	Ω		
t _d	0,05	ms		
t _r	(1 _{-0,5}) μs			
_{t1} a	0,2 s	to 5 s		

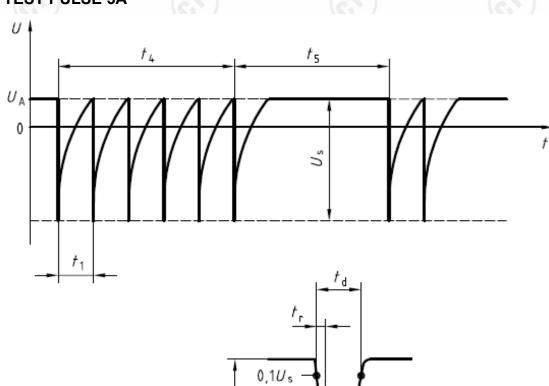
The repetition time t_1 can be short, depending on the switching. The use of a short repetition time reduces the test time.



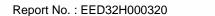
Report No.: EED32H000320 Page 19 of 29

8.5.3 TEST PULSE 2B

Parameter	12 V system	24 V system	
$U_{\mathtt{s}}$	10 V	20 V	
R_{i}	0 Ω to 0,05 Ω		
$t_{\sf d}$	0,2 s to 2 s		
t ₁₂	1 ms ± 0,5 ms		
t_{r}	1 ms ± 0,5 ms		
<i>t</i> ₆	1 ms ± 0,5 ms		



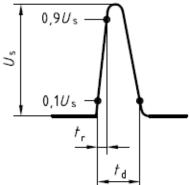
8.5.4 TEST PULSE 3A

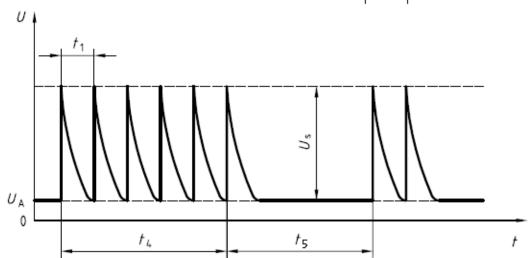


Ųs

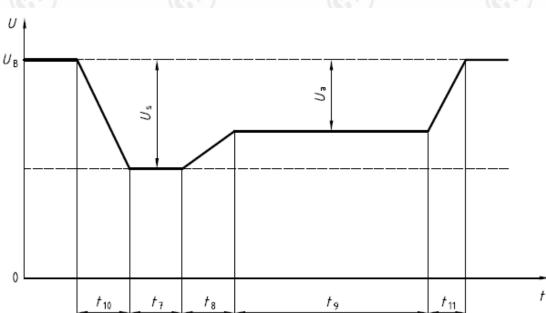
Parameter	12 V system	24 V system	
$U_{\mathtt{s}}$	– 112 V to – 150 V	– 150 V to – 200 V	
R_{i}	50 Ω		
$t_{\sf d}$	(0,1 ^{+0,1} ₀) μs		
t _r	5 ns ± 1,5 ns		
t ₁	100 μs		
t ₄	10 ms		
<i>t</i> ₅	90 ms		

0,9*U*s


8.5.5 TEST PULSE 3B



Parameter	12 V system	24 V system	
$U_{\mathtt{s}}$	+ 75 V to + 100 V	+ 150 V to + 200 V	
$R_{\rm i}$	50 Ω		
t _d	(0,1 ^{+0,1} ₀) μs		
t _r	5 ns ± 1,5 ns		
<i>t</i> ₁	100 μs		
t ₄	10 ms		
t ₅	90 ms		



Page 22 of 29 Report No.: EED32H000320

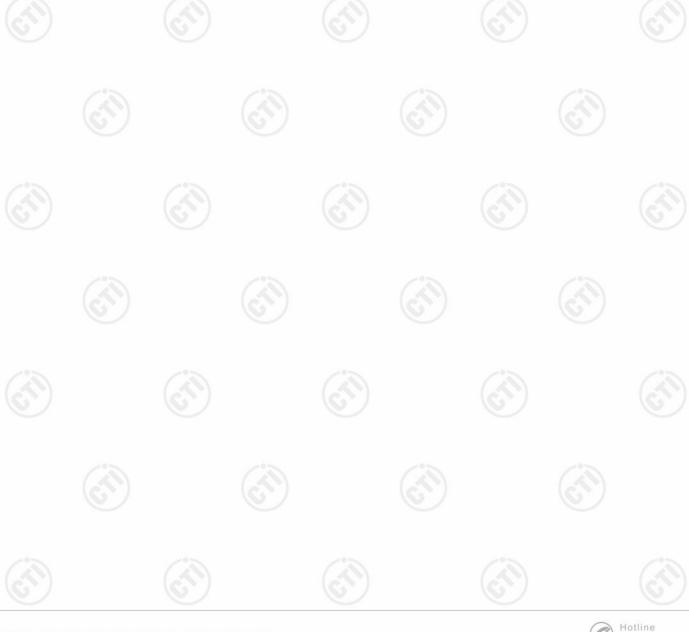
8.5.6 TEST PULSE 4

Parameter	12 V system	24 V system	
$U_{\mathtt{s}}$	– 6 V to – 7 V	– 12 V to – 16 V	
U_{a}	$-2.5 \text{ V to } -6 \text{ V with } U_a \leqslant U_s $	– 5 V to – 12 V with $ U_{a} \leqslant U_{S} $	
R_{i}	0 Ω to 0,02 Ω		
t ₇	15 ms to 40 ms ^a	50 ms to 100 ms ^a	
t ₈	≼ 50 ms		
t ₉	0,5 s to 20 s ^a		
t ₁₀	5 ms	10 ms	
t ₁₁	5 ms to 100 ms ^b	10 ms to 100 ms ^c	

The value used should be agreed between the vehicle manufacturer and the equipment supplier to suit the proposed application.

 $t_{11} = 10$ ms is typical of the case when engine starts at the end of the cranking period, while $t_{11} = 100$ ms is typical of the case when the engine does not start.

 $t_{11} = 5$ ms is typical of the case when engine starts at the end of the cranking period, while $t_{11} = 100$ ms is typical of the case when the engine does not start.



Report No. : EED32H000320 Page 23 of 29

8.6 TEST RESULTS

Test Pulse	Test Voltage	Required Level	Test Level	Test Result
1	-75V	D	C ¹	Pass
2a	+37V	D	Α	Pass
2b	+10V	D	C ¹	Pass
3a	-112V	D	Α	Pass
3b	+75V	D	Α	Pass
4	-6V	D	C ¹	Pass

Remarks: 1. During test, the power indicator light is put out and it will recover normally automatically after test.

Report No.: EED32H000320 Page 24 of 29

PHOTOGRAPHS OF TEST SETUP APPENDIX 1

BROADBAND AND NARROWBAND RADIATED DISTURBANCES TEST SETUP (30MHz-200MHz)

BROADBAND AND NARROWBAND RADIATED DISTURBANCES TEST SETUP (200MHz-1000MHz)

Page 25 of 29

CONDUCTED TRANSIENT DISTURBANCES TEST SETUP

CONDUCTED TRANSIENT IMMUNITY TEST SETUP

Page 26 of 29

APPENDIX 2 PHOTOGRAPHS OF PRODUCT

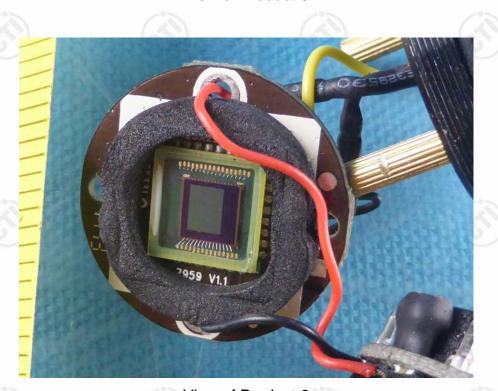
View of Product-1

View of Product-2

Page 27 of 29

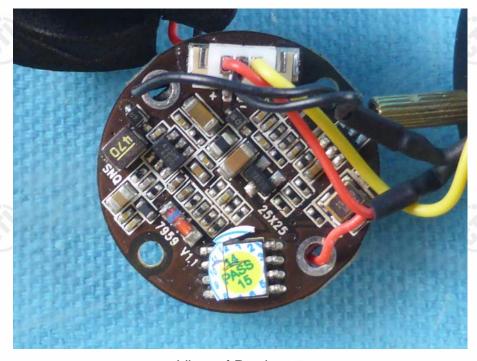
View of Product-3

View of Product-4



View of Product-5

View of Product-6



View of Product-7

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

